Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[dichloridomercury(II)]-µ-1,4-bis(3-pyridylaminomethyl)benzene- $\kappa^2 N: N' N, N$ -dimethylformamide monosolvate]

Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 28 June 2011; accepted 1 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.013 Å; disorder in solvent or counterion; R factor = 0.051; wR factor = 0.167; data-toparameter ratio = 18.9.

The crystal structure of the polymeric title compound, $\{[HgCl_2(C_{18}H_{18}N_4)] \cdot C_3H_7NO\}_n$, features an *N*-heterocyclic ligand which links adjacent HgCl₂ units into a helical chain running along the b axis. The coordination geometry of the Hg^{II} atom is a distorted tetrahedron. The dimethylformamide molecule is disordered over two positions in a 1:1 ratio, and is linked to the complex molecules via N-H···O hydrogen bonds.

Related literature

For the structure of the N-heterocyclic ligand, see: Zhu et al. (2007).

Experimental

Crystal data [HgCl₂(C₁₈H₁₈N₄)]·C₃H₇NO $M_r = 634.95$ Monoclinic, $P2_1/n$ a = 8.4851 (9) Åb = 15.1215 (14) Å c = 19.490 (2) Å $\beta = 103.826 \ (2)^{\circ}$

V = 2428.2 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 6.58 \text{ mm}^{-1}$ T = 293 K $0.15 \times 0.11 \times 0.11 \ \mathrm{mm}$ $R_{\rm int} = 0.089$

22980 measured reflections

5479 independent reflections

2593 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.439, T_{\max} = 0.531$

Refinement

Hg

Hg

$R[F^2 > 2\sigma(F^2)] = 0.051$	42 restraints
$wR(F^2) = 0.167$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 1.26 \text{ e } \text{\AA}^{-3}$
5479 reflections	$\Delta \rho_{\rm min} = -1.31 \text{ e } \text{\AA}^{-3}$
290 parameters	

Table 1

Selected bond lengths (Å).

l - N1 $l - N4^{i}$		2.395 2.308	5 (7) 8 (6)	Hg1-Cl1 Hg1-Cl2	2.355 (3) 2.391 (3)

Symmetry code: (i) $-x + \frac{5}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H2N \cdots O1 N2 - H2N \cdots O1' N3 - H3N \cdots O1'' N3 - H3N \cdots O1'''$	0.88 0.88 0.88 0.88	2.15 2.11 2.14 2.13	3.03 (3) 2.99 (3) 3.01 (3) 2.98 (3)	174 180 166 162

Symmetry code: (ii) x + 1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

This work is supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province, China (No. 12511z023) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5257).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925. Zhu, L.-N., Gao, S. & Huo, L.-H. (2007). Acta Cryst. E63, 04459.

Acta Cryst. (2011). E67, m1051 [doi:10.1107/S1600536811026043]

catena-Poly[[[dichloridomercury(II)]- μ -1,4-bis(3-pyridylaminomethyl)benzene- $\kappa^2 N:N'$] N,N-dimethylformamide monosolvate\]

S. Gao and S. W. Ng

Comment

1,4-Bis(2-pyridylaminomethyl)benzene is a flexible *N*-heterocycle whose pyridyl and amino N-atoms are capable for forming coordination polymers (Zhu *et al.*, 2007). The crystal structure of $HgCl_2(C_{18}H_{18}N_4)$ DMF features the *N*-heterocycle linking adjacent $HgCl_2$ units into a helical chain (Scheme I, Fig. 1). The geometry of Hg^{II} is a tetrahedron. The lattice DMF molecule is disordered in two positions in a 1:1 ratio. The *N*-heterocycle forms an N–H···O hydrogen bond to the solvent molecule at an N···O distance of 2.99 (3) and 3.03 (3) Å; the hydrogen bond probably stabilizes the solvent molecule so that it is not lost during crystallization.

Experimental

A THF solution (10 ml) of mercuric chloride (2 mmol) was mixed with a DMF solution (5 ml) of 1,4-bis(3-pyridylaminomethyl)benzene (2 mmol). The solution was filtered and sent aside for the grown of colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms similar treated (N–H 0.86 Å).

The lattice DMF molecule is disordered over two sites; the disorder could not be refined, and was assumed to be a 1:1 type of disorder. The C–O distances were restrained to 1.25 ± 0.01 Å, the C_{carbonyl}–N distances to 1.35 ± 0.01 Å and the *N*–C_{methyl} distances to 1.45 ± 0.01 Å. Each component was retrained to planar, with a maximum deviation of 0.01 Å. The temperature factors of the primed atoms were set to those of the unprimed ones, and the anisotropic temperature factors were restrained to be nearly isotropic.

The final difference Fourier map had peaks/holes in the vicinity of Hg1.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric chain structure of $HgCl_2(C_{18}H_{18}N_4)$ DMF at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary. radius.

catena-Poly[[[dichloridomercury(II)]- μ -1,4-bis(3- pyridylaminomethyl)benzene- $\kappa^2 N:N'$] *N*,*N*-dimethylformamide monosolvate]

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 10259 reflections

F(000) = 1232 $D_{\rm x} = 1.737 \text{ Mg m}^{-3}$

 $\theta = 3.2-27.5^{\circ}$ $\mu = 6.58 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.15 \times 0.11 \times 0.11 \text{ mm}$

Crystal data

$[HgCl_2(C_{18}H_{18}N_4)] \cdot C_3H_7NO$
$M_r = 634.95$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 8.4851 (9) Å
<i>b</i> = 15.1215 (14) Å
c = 19.490 (2) Å
$\beta = 103.826 \ (2)^{\circ}$
$V = 2428.2 (4) \text{ Å}^3$
Z = 4

Data collection

5479 independent reflections
2593 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.089$
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
$h = -11 \rightarrow 11$
$k = -19 \rightarrow 19$
$l = -25 \rightarrow 22$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.167$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0656P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5479 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
290 parameters	$\Delta \rho_{max} = 1.26 \text{ e} \text{ Å}^{-3}$
42 restraints	$\Delta \rho_{min} = -1.31 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Hg1	0.65054 (5)	0.63785 (2)	0.73300 (2)	0.0944 (2)	

Cl1	0.3880 (4)	0.5916 (3)	0.7371 (2)	0.1488 (12)	
Cl2	0.7868 (4)	0.77413 (15)	0.72364 (19)	0.1366 (11)	
N1	0.7052 (9)	0.5581 (4)	0.6351 (4)	0.0845 (19)	
N2	0.5616 (9)	0.3645 (4)	0.5347 (5)	0.097 (2)	
H2N	0.4912	0.3482	0.5589	0.116*	
N3	1.2859 (9)	0.1242 (4)	0.5624 (4)	0.089 (2)	
H3N	1.2888	0.1819	0.5685	0.106*	
N4	1.6587 (8)	0.0700 (4)	0.6783 (3)	0.0778 (18)	
C1	0.6262 (10)	0.4841 (5)	0.6124 (5)	0.077 (2)	
H1	0.5528	0.4619	0.6366	0.092*	
C2	0.6491 (10)	0.4383 (5)	0.5535 (5)	0.078 (2)	
C3	0.7569 (11)	0.4741 (7)	0.5156 (5)	0.097 (3)	
H3	0.7720	0.4457	0.4753	0.117*	
C4	0.8377 (13)	0.5496 (7)	0.5381 (6)	0.105 (3)	
H4	0.9108	0.5734	0.5144	0.126*	
C5	0.8089 (11)	0.5909 (6)	0.5976 (6)	0.098 (3)	
Н5	0.8631	0.6435	0.6127	0.118*	
C6	0.5810 (12)	0.3099 (7)	0.4743 (5)	0.108 (3)	
H6A	0.5769	0.3485	0.4342	0.130*	
H6B	0.4894	0.2698	0.4617	0.130*	
C7	0.7345 (10)	0.2565 (5)	0.4868 (5)	0.077 (2)	
C8	0.7897 (12)	0.2164 (6)	0.5502 (6)	0.100 (3)	
H8	0.7379	0.2257	0.5866	0.120*	
С9	0.9204 (13)	0.1631 (7)	0.5601 (5)	0.101 (3)	
Н9	0.9559	0.1349	0.6035	0.121*	
C10	1.0050 (10)	0.1482 (5)	0.5074 (5)	0.073 (2)	
C11	0.9536 (11)	0.1896 (6)	0.4447 (5)	0.085 (2)	
H11	1.0070	0.1811	0.4087	0.102*	
C12	0.8207 (12)	0.2447 (6)	0.4349 (5)	0.093 (3)	
H12	0.7875	0.2749	0.3923	0.111*	
C13	1.1469 (10)	0.0856 (6)	0.5190 (6)	0.098 (3)	
H13A	1.1204	0.0317	0.5408	0.118*	
H13B	1.1685	0.0701	0.4738	0.118*	
C14	1.5277 (9)	0.1115 (5)	0.6468 (4)	0.0675 (19)	
H14	1.5119	0.1688	0.6610	0.081*	
C15	1.4147 (9)	0.0755 (5)	0.5950 (4)	0.0700 (19)	
C16	1.4362 (11)	-0.0123 (5)	0.5778 (5)	0.083 (2)	
H16	1.3588	-0.0406	0.5429	0.100*	
C17	1.5701 (12)	-0.0560 (6)	0.6123 (5)	0.092 (3)	
H17	1.5835	-0.1152	0.6020	0.111*	
C18	1.6827 (11)	-0.0152 (5)	0.6607 (5)	0.083 (2)	
H18	1.7778	-0.0446	0.6825	0.100*	
01	0.300 (4)	0.314 (2)	0.6094 (14)	0.110 (3)	0.50
N5	0.181 (3)	0.3560 (13)	0.7007 (11)	0.085 (3)	0.50
C19	0.303 (3)	0.3275 (14)	0.6732 (14)	0.128 (6)	0.50
H19	0.4011	0.3163	0.7053	0.154*	0.50
C20	0.025 (3)	0.375 (2)	0.6545 (18)	0.197 (11)	0.50
H20A	0.0333	0.4262	0.6267	0.295*	0.50
H20B	-0.0525	0.3856	0.6823	0.295*	0.50

-0.0096	0.3252	0.6239	0.295*	0.50
0.180 (5)	0.380 (2)	0.7725 (13)	0.185 (9)	0.50
0.1230	0.4349	0.7723	0.278*	0.50
0.2899	0.3868	0.7998	0.278*	0.50
0.1273	0.3346	0.7931	0.278*	0.50
0.323 (4)	0.309 (2)	0.6172 (14)	0.110 (3)	0.50
0.181 (3)	0.3701 (11)	0.6889 (12)	0.085 (3)	0.50
0.200 (3)	0.3494 (13)	0.6242 (13)	0.128 (6)	0.50
0.1203	0.3654	0.5844	0.154*	0.50
0.052 (4)	0.416 (2)	0.712 (2)	0.197 (11)	0.50
-0.0339	0.3751	0.7128	0.295*	0.50
0.0113	0.4629	0.6793	0.295*	0.50
0.0940	0.4398	0.7580	0.295*	0.50
0.308 (3)	0.344 (2)	0.7492 (15)	0.185 (9)	0.50
0.3351	0.2828	0.7443	0.278*	0.50
0.2704	0.3509	0.7917	0.278*	0.50
0.4020	0.3798	0.7517	0.278*	0.50
	-0.0096 0.180 (5) 0.1230 0.2899 0.1273 0.323 (4) 0.181 (3) 0.200 (3) 0.1203 0.052 (4) -0.0339 0.0113 0.0940 0.308 (3) 0.3351 0.2704 0.4020	-0.00960.32520.180 (5)0.380 (2)0.12300.43490.28990.38680.12730.33460.323 (4)0.309 (2)0.181 (3)0.3701 (11)0.200 (3)0.3494 (13)0.12030.36540.052 (4)0.416 (2)-0.03390.37510.01130.46290.09400.43980.308 (3)0.344 (2)0.33510.28280.27040.35090.40200.3798	-0.00960.32520.62390.180 (5)0.380 (2)0.7725 (13)0.12300.43490.77230.28990.38680.79980.12730.33460.79310.323 (4)0.309 (2)0.6172 (14)0.181 (3)0.3701 (11)0.6889 (12)0.200 (3)0.3494 (13)0.6242 (13)0.12030.36540.58440.052 (4)0.416 (2)0.712 (2)-0.03390.37510.71280.01130.46290.67930.39400.43980.75800.308 (3)0.344 (2)0.7492 (15)0.33510.28280.74430.27040.35090.7517	-0.00960.32520.62390.295*0.180 (5)0.380 (2)0.7725 (13)0.185 (9)0.12300.43490.77230.278*0.28990.38680.79980.278*0.12730.33460.79310.278*0.323 (4)0.309 (2)0.6172 (14)0.110 (3)0.181 (3)0.3701 (11)0.6889 (12)0.085 (3)0.200 (3)0.3494 (13)0.6242 (13)0.128 (6)0.12030.36540.58440.154*0.052 (4)0.416 (2)0.712 (2)0.197 (11)-0.03390.37510.71280.295*0.01130.46290.67930.295*0.308 (3)0.344 (2)0.7492 (15)0.185 (9)0.33510.28280.74430.278*0.27040.37980.75170.278*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.0921 (3)	0.0868 (3)	0.0909 (3)	0.00588 (18)	-0.0045 (2)	-0.00621 (18)
Cl1	0.096 (2)	0.202 (3)	0.142 (3)	-0.024 (2)	0.017 (2)	-0.030 (3)
C12	0.139 (3)	0.0719 (13)	0.172 (3)	0.0028 (14)	-0.015 (2)	0.0193 (16)
N1	0.071 (5)	0.083 (4)	0.092 (5)	0.005 (4)	0.007 (4)	-0.001 (4)
N2	0.065 (5)	0.099 (5)	0.123 (7)	0.002 (4)	0.014 (5)	-0.031 (5)
N3	0.066 (5)	0.072 (4)	0.116 (6)	0.005 (3)	-0.003 (4)	-0.016 (4)
N4	0.079 (5)	0.073 (4)	0.065 (4)	-0.009 (3)	-0.014 (3)	-0.005 (3)
C1	0.062 (5)	0.080 (5)	0.081 (5)	0.007 (4)	0.002 (4)	0.002 (4)
C2	0.062 (5)	0.078 (5)	0.089 (6)	0.013 (4)	0.010 (5)	-0.010 (5)
C3	0.078 (7)	0.114 (8)	0.097 (7)	0.020 (5)	0.014 (6)	-0.012 (6)
C4	0.107 (8)	0.103 (7)	0.113 (8)	0.004 (6)	0.041 (7)	0.005 (6)
C5	0.072 (6)	0.086 (6)	0.126 (8)	-0.002 (5)	0.004 (6)	0.003 (6)
C6	0.096 (7)	0.108 (7)	0.101 (7)	0.026 (6)	-0.016 (6)	-0.034 (6)
C7	0.064 (5)	0.081 (5)	0.082 (6)	0.013 (4)	0.005 (5)	-0.010 (4)
C8	0.092 (7)	0.113 (7)	0.101 (7)	0.036 (6)	0.037 (6)	0.020 (6)
C9	0.113 (8)	0.122 (7)	0.066 (6)	0.029 (6)	0.017 (6)	0.021 (5)
C10	0.057 (5)	0.070 (4)	0.080 (6)	0.007 (4)	-0.006 (4)	-0.007 (4)
C11	0.083 (6)	0.100 (6)	0.075 (6)	0.016 (5)	0.023 (5)	-0.007 (5)
C12	0.104 (8)	0.107 (6)	0.063 (5)	0.025 (5)	0.012 (5)	-0.002 (5)
C13	0.066 (6)	0.090 (6)	0.119 (8)	0.007 (5)	-0.017 (5)	-0.029 (5)
C14	0.058 (5)	0.068 (4)	0.056 (4)	0.010 (3)	-0.027 (3)	-0.004 (3)
C15	0.063 (5)	0.069 (4)	0.068 (5)	0.012 (4)	-0.004 (4)	0.003 (4)
C16	0.086 (6)	0.067 (4)	0.083 (6)	0.007 (4)	-0.006 (5)	-0.011 (4)
C17	0.094 (7)	0.070 (5)	0.099 (7)	0.009 (5)	-0.006 (6)	-0.006 (5)
C18	0.082 (6)	0.070 (5)	0.083 (6)	0.007 (4)	-0.009 (5)	-0.003 (4)
01	0.108 (7)	0.101 (4)	0.125 (6)	0.006 (5)	0.035 (5)	-0.011 (4)
N5	0.083 (5)	0.087 (6)	0.082 (6)	0.010 (4)	0.015 (5)	0.016 (5)

C19	0.125 (10)	0.134 (9)	0.122 (10)	0.015 (7)	0.023 (8)	0.009 (8)
C20	0.188 (13)	0.210 (14)	0.193 (14)	0.023 (9)	0.047 (10)	-0.009 (9)
C21	0.189 (12)	0.195 (12)	0.177 (12)	0.005 (9)	0.054 (9)	0.000 (9)
O1'	0.108 (7)	0.101 (4)	0.125 (6)	0.006 (5)	0.035 (5)	-0.011 (4)
N5'	0.083 (5)	0.087 (6)	0.082 (6)	0.010 (4)	0.015 (5)	0.016 (5)
C19'	0.125 (10)	0.134 (9)	0.122 (10)	0.015 (7)	0.023 (8)	0.009 (8)
C20'	0.188 (13)	0.210 (14)	0.193 (14)	0.023 (9)	0.047 (10)	-0.009 (9)
C21'	0.189 (12)	0.195 (12)	0.177 (12)	0.005 (9)	0.054 (9)	0.000 (9)
Geometric param	neters (Å, °)					
Hg1—N1		2.395 (7)	C11-	-H11		0.9300
Hg1—N4 ⁱ		2.308 (6)	C12-	-H12		0.9300
Hg1—Cl1		2,355 (3)	C13-	-H13A		0 9700
Hg1—Cl2		2.393(3)	C13-	_H13B		0.9700
N1—C1		1.325(10)	C14-			1 331 (10)
N1—C5		1.323(10) 1 364(11)	C14-	_H14		0.9300
N2-C2		1.367(11) 1 342 (10)	C15-			1 392 (10)
N2-C6		1.512(10) 1 479(11)	C16-	-C17		1.392(10) 1 346(12)
N2H2N		0.8800	C16-	_H16		0.9300
N3C15		1.345(10)	C10	C18		1 324 (11)
N3-C13		1.515(10) 1.404(10)	C17-	_H17		0.9300
N3_H3N		0.8800	C18-	H18		0.9300
NA-C14		1 296 (9)	01-	-C19		1 253 (10)
N4-C18		1.200(9)	01— N5—	-C19		1.255(10) 1.344(10)
		1.301(9)	N5	-C19		1.344 (10)
N4—Hg1"		2.308 (6)	N5—	-C20		1.440 (10)
C1—C2		1.392 (11)	N5—	-C21		1.448 (10)
C1—H1		0.9300	C19-	-H19		0.9300
C2—C3		1.414 (12)	C20-	-H20A		0.9600
C3—C4		1.351 (13)	C20-	-H20B		0.9600
С3—Н3		0.9300	C20-	-H20C		0.9600
C4—C5		1.390 (13)	C21-	-H21A		0.9600
C4—H4		0.9300	C21-	-H21B		0.9600
С5—Н5		0.9300	C21-	-H21C		0.9600
C6—C7		1.502 (11)	01'-	-C19'		1.250 (10)
С6—Н6А		0.9700	N5'—	-C19'		1.346 (10)
С6—Н6В		0.9700	N5'—	-C20'		1.448 (10)
C7—C8		1.356 (12)	N5'—	-C21'		1.449 (10)
C7—C12		1.394 (11)	C19'-	—H19'		0.9300
C8—C9		1.347 (12)	C20'-	-H20D		0.9600
C8—H8		0.9300	C20'-	—H20E		0.9600
C9—C10		1.405 (12)	C20'-	—H20F		0.9600
С9—Н9		0.9300	C21'-	—H21D		0.9600
C10-C11		1.348 (11)	C21'-	—H21E		0.9600
C10-C13		1.506 (11)	C21'-	—H21F		0.9600
C11—C12		1.378 (11)				
N4 ⁱ —Hg1—Cl1		110.0 (2)	C10-			118.9 (8)
N4 ⁱ —Hg1—Cl2		100.07 (18)	C10-			120.6

Cl1—Hg1—Cl2	137.49 (12)	C12—C11—H11	120.6
N4 ⁱ —Hg1—N1	97.9 (2)	C11—C12—C7	122.1 (8)
Cl1—Hg1—N1	104.0 (2)	C11—C12—H12	119.0
Cl2—Hg1—N1	100.6 (2)	C7—C12—H12	119.0
C1—N1—C5	117.9 (8)	N3—C13—C10	110.8 (7)
C1—N1—Hg1	120.9 (6)	N3—C13—H13A	109.5
C5—N1—Hg1	121.1 (6)	С10—С13—Н13А	109.5
C2—N2—C6	121.5 (8)	N3—C13—H13B	109.5
C2—N2—H2N	119.2	С10—С13—Н13В	109.5
C6—N2—H2N	119.2	H13A—C13—H13B	108.1
C15—N3—C13	121.9 (7)	N4—C14—C15	122.8 (7)
C15—N3—H3N	119.0	N4—C14—H14	118.6
C13—N3—H3N	119.0	C15—C14—H14	118.6
C14—N4—C18	120.1 (7)	C14—C15—N3	119.4 (7)
C14—N4—Hg1 ⁱⁱ	120.6 (5)	C14—C15—C16	117.4 (7)
C18—N4—Hg1 ⁱⁱ	119.3 (5)	N3—C15—C16	123.2 (8)
N1—C1—C2	122.4 (8)	C17—C16—C15	119.4 (8)
N1—C1—H1	118.8	С17—С16—Н16	120.3
C2—C1—H1	118.8	С15—С16—Н16	120.3
N2—C2—C1	117.5 (8)	C18—C17—C16	120.4 (8)
N2—C2—C3	124.0 (8)	С18—С17—Н17	119.8
C1—C2—C3	118.4 (8)	С16—С17—Н17	119.8
C4—C3—C2	119.7 (9)	C17—C18—N4	119.7 (8)
С4—С3—Н3	120.1	С17—С18—Н18	120.2
С2—С3—Н3	120.1	N4—C18—H18	120.2
C3—C4—C5	118.3 (9)	C19—N5—C20	120 (3)
C3—C4—H4	120.9	C19—N5—C21	130 (3)
С5—С4—Н4	120.9	C20—N5—C21	110 (3)
N1—C5—C4	123.3 (9)	O1—C19—N5	128 (3)
N1—C5—H5	118.4	O1—C19—H19	116.2
С4—С5—Н5	118.4	N5—C19—H19	116.2
N2—C6—C7	115.3 (8)	C19'—N5'—C20'	132 (3)
N2—C6—H6A	108.4	C19'—N5'—C21'	118 (2)
С7—С6—Н6А	108.4	C20'—N5'—C21'	111 (2)
N2—C6—H6B	108.4	O1'—C19'—N5'	121 (3)
С7—С6—Н6В	108.4	O1'—C19'—H19'	119.7
H6A—C6—H6B	107.5	N5'—C19'—H19'	119.7
C8—C7—C12	118.5 (8)	N5'—C20'—H20D	109.5
C8—C7—C6	119.1 (8)	N5'—C20'—H20E	109.5
C12—C7—C6	122.4 (9)	H20D-C20'-H20E	109.5
C9—C8—C7	119.4 (8)	N5'—C20'—H20F	109.5
С9—С8—Н8	120.3	H20D-C20'-H20F	109.5
С7—С8—Н8	120.3	H20E—C20'—H20F	109.5
C8—C9—C10	122.6 (9)	N5'—C21'—H21D	109.5
С8—С9—Н9	118.7	N5'—C21'—H21E	109.5
С10—С9—Н9	118.7	H21D—C21'—H21E	109.5
C11—C10—C9	118.5 (7)	N5'—C21'—H21F	109.5
C11—C10—C13	120.1 (8)	H21D—C21'—H21F	109.5

C9—C10—C13	121.4 (8)	H21E—C21'—H21F	109.5
N4 ⁱ —Hg1—N1—C1	90.8 (6)	C8—C9—C10—C13	-177.7 (10)
Cl1—Hg1—N1—C1	-22.2 (7)	C9—C10—C11—C12	0.1 (13)
Cl2—Hg1—N1—C1	-167.3 (6)	C13—C10—C11—C12	178.2 (8)
N4 ⁱ —Hg1—N1—C5	-94.4 (7)	C10—C11—C12—C7	-2.3 (15)
Cl1—Hg1—N1—C5	152.6 (6)	C8—C7—C12—C11	4.0 (15)
Cl2—Hg1—N1—C5	7.5 (7)	C6-C7-C12-C11	-174.4 (9)
C5—N1—C1—C2	1.8 (12)	C15—N3—C13—C10	162.7 (8)
Hg1—N1—C1—C2	176.8 (6)	C11—C10—C13—N3	105.7 (10)
C6—N2—C2—C1	-178.2 (7)	C9-C10-C13-N3	-76.3 (12)
C6—N2—C2—C3	4.8 (14)	C18—N4—C14—C15	-2.5 (12)
N1—C1—C2—N2	-179.4 (8)	Hg1 ⁱⁱ —N4—C14—C15	179.4 (6)
N1—C1—C2—C3	-2.1 (13)	N4-C14-C15-N3	-176.6 (8)
N2-C2-C3-C4	178.9 (9)	N4-C14-C15-C16	4.0 (12)
C1—C2—C3—C4	1.8 (14)	C13—N3—C15—C14	-165.7 (8)
C2—C3—C4—C5	-1.4 (15)	C13—N3—C15—C16	13.6 (14)
C1—N1—C5—C4	-1.3 (14)	C14—C15—C16—C17	-1.8 (13)
Hg1—N1—C5—C4	-176.3 (7)	N3-C15-C16-C17	178.9 (9)
C3—C4—C5—N1	1.1 (16)	C15-C16-C17-C18	-1.9 (15)
C2—N2—C6—C7	73.2 (12)	C16-C17-C18-N4	3.5 (14)
N2—C6—C7—C8	40.2 (13)	C14—N4—C18—C17	-1.4 (12)
N2—C6—C7—C12	-141.5 (9)	Hg1 ⁱⁱ —N4—C18—C17	176.7 (7)
C12—C7—C8—C9	-3.4 (15)	C20-N5-C19-O1	0.0 (2)
C6—C7—C8—C9	175.0 (10)	C21—N5—C19—O1	-174 (3)
C7—C8—C9—C10	1.3 (17)	C20'—N5'—C19'—O1'	180.0 (4)
C8—C9—C10—C11	0.4 (15)	C21'—N5'—C19'—O1'	0.0 (3)
		. 0. /0	

Symmetry codes: (i) -x+5/2, y+1/2, -z+3/2; (ii) -x+5/2, y-1/2, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2N···O1	0.88	2.15	3.03 (3)	174
N2—H2N…O1'	0.88	2.11	2.99 (3)	180
N3—H3N…O1 ⁱⁱⁱ	0.88	2.14	3.01 (3)	166
N3—H3N···O1 ^{viii}	0.88	2.13	2.98 (3)	162
Symmetry codes: (iii) $x+1$, y , z .				

Fig. 1